Numerical simulation of pulsatile turbulent flow in tapering stenosed arteries
نویسندگان
چکیده
Purpose – The purpose of this paper is to investigate the geometric effects and pulsatile characteristics during the stenotic flows in tapering arteries. Design/methodology/approach – The low Reynolds number k ! turbulence model is applied to describe the stenotic flows in the tapering arteries in this paper. The results are divided into two sections. The first section characterizes the geometric effects on the turbulent flow under steady condition. The second section illustrates the key physiological parameters including the pressure drop and wall stress during the periodic cycle of the pulsatile flow in the arteries. Findings – The tapering and stenoses severity intensify the turbulent flow and stretch the recirculation zones in the turbulent arterial flow. The wall shear stress, pressure drop and velocity vary most intensively at the peak phase during the periodic cycle of the pulsatile turbulent flow. Originality/value – This paper provides a comprehensive understanding of the spatial-temporal fluid dynamics involved in turbulent and transitional arterial flow with stenoses. The low Reynolds number k ! turbulence model method is applied for the analyses of the geometric effects on the arterial flow and fluid feature during the periodic cycle.
منابع مشابه
Numerical Investigation of Angulation Effects in Stenosed Renal Arteries
Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...
متن کاملNumerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction
The turbulent pulsatile blood flow through stenosed arteries considering the elastic property of the wall is investigated numerically. During the numerical model validation both standard k-ε model and RNG K-ε model are used. Compared with the RNG K-ε model, the standard K-ε model shows better agreement with previous experimental results and is better able to show the reverse flow region. Also, ...
متن کاملDirect Numerical Simulations of Transitional Pulsatile Flows in Stenotic Vessels
Title of dissertation: DIRECT NUMERICAL SIMULATIONS OF TRANSITIONAL PULSATILE FLOWS IN STENOTIC VESSELS Nikolaos Beratlis Doctor of Philosophy, 2008 Dissertation directed by: Professor Elias Balaras Department of Mechanical Engineering In the present work a numerical study of transitional pulsatile flow through planar and cylindrical constrictions is presented. First, a simulation carefully coo...
متن کاملEffect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...
متن کاملPulsatile Non-Newtonian Fluid Flows in a Model Aneurysm with Oscillating Wall
This research presents a numerical simulation of an unsteady two-dimensional channel flow of Newtonian and some non-Newtonian fluids using the finite-volume method. The walls of the geometry oscillate sinusoidally with time. We have used the Cartesian curvilinear coordinates to handle complex geometries, i.e., arterial stents and bulges and the governing Navier–Stokes equations have been modifi...
متن کامل